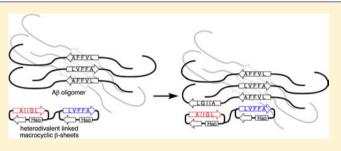


Heterodivalent Linked Macrocyclic β -Sheets with Enhanced Activity against A β Aggregation: Two Sites Are Better Than One

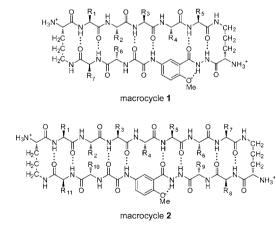

Pin-Nan Cheng,[†] Ryan Spencer,[†] R. Jeremy Woods,[†] Charles G. Glabe,[‡] and James S. Nowick^{*,†}

[†]Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States

[‡]Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States

Supporting Information

ABSTRACT: This paper reports a series of heterodivalent linked macrocyclic β -sheets **6** that are not only far more active against amyloid- β (A β) aggregation than their monovalent components **1a** and **1b** but also are dramatically more active than their homodivalent counterparts **4** and **5**. The macrocyclic β -sheet components **1a** and **1b** comprise pentapeptides derived from the N- and C-terminal regions of A β and molecular template and turn units that enforce a β -sheet structure and block aggregation. Thioflavin T fluorescence assays show that heterodivalent linked macrocyclic β -sheets **6**



delay $A\beta_{1-40}$ aggregation 6–8-fold at equimolar concentrations and substantially delay aggregation at substoichiometric concentrations, while homodivalent linked macrocyclic β -sheets 4 and 5 and monovalent macrocyclic β -sheets 1a and 1b only exhibit more modest effects at equimolar or greater concentrations. A model to explain these observations is proposed, in which the inhibitors bind to and stabilize the early β -structured $A\beta$ oligomers and thus delay aggregation. In this model, heterodivalent linked macrocyclic β -sheets 6 bind to the β -structured oligomers more strongly, because N-terminal-derived component 1a can bind to the N-terminal-based core of the β -structured oligomers, while the C-terminal-derived component 1b can achieve additional interactions with the C-terminal region of $A\beta$. The enhanced activity of the heterodivalent compounds suggests that polyvalent inhibitors that can target multiple regions of amyloidogenic peptides and proteins are better than those that only target a single region.

INTRODUCTION

Amyloid- β (A β) fibrils associated with Alzheimer's disease contain layered β -sheet structures involving β -strands from both the N- and C-terminal regions of A β peptides.¹ NMRbased structural models of A β fibrils show that A β peptides selfassemble into parallel β -sheets that fold into U-shaped superstructures (Figure 1).² The two parallel β -sheets of the U-shaped superstructure are layered in an antiparallel fashion. Similar fibril structures also occur in human islet amyloid polypeptide associated with type II diabetes and likely occur more widely in amyloids.³

Macrocyclic β -sheets containing turn and template units provide useful chemical tools with which to understand and control amyloid aggregation.⁴ Our laboratory has introduced 42- and 54-membered ring macrocycles 1 and 2 (Chart 1) that can fold into β -sheet structures and display preorganized β strands. Macrocycle 1 incorporates a pentapeptide β -strand into the upper strand, while macrocycle 2 incorporates a heptapeptide β -strand. When these macrocycles display amyloidogenic β -strands, they are able to inhibit or suppress amyloid aggregation through β -sheet interactions. We have demonstrated that macrocycles 1 containing pentapeptide VQIVY can inhibit aggregation of the τ -derived peptide Ac-VQIVYK-NH₂ (AcPHF6) associated with Alzheimer's disease⁵ and that macrocycles 2 containing amyloidogenic heptapeptide Chart 1

sequences can inhibit aggregation of A β , β_2 -microglobulin and α -synuclein and can detoxify A β aggregates.^{4c,d} We have also demonstrated that the activity of macrocyclic β -sheets against A β aggregation can be dramatically enhanced through expansion from macrocycle **1** to **2**.^{4d}

 Received:
 June 5, 2012

 Published:
 July 24, 2012

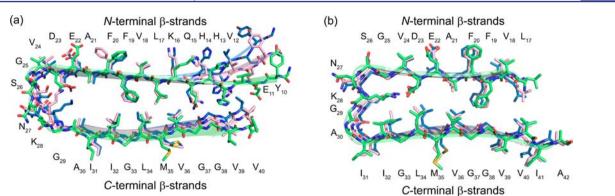
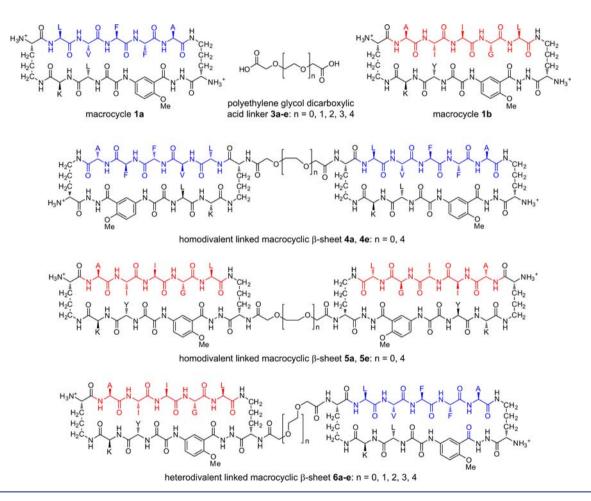
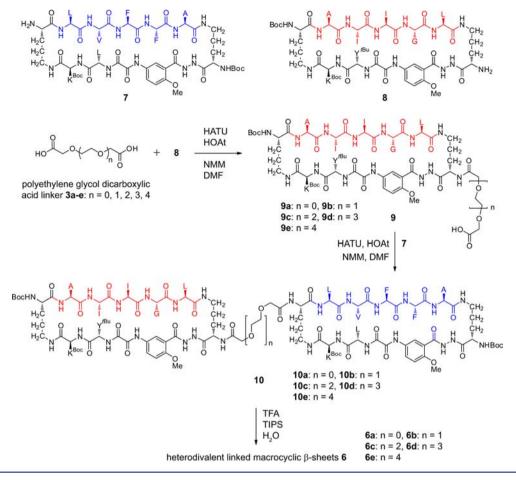



Figure 1. NMR-based structural models of $A\beta$ fibrils. Models of (a) $A\beta_{1-40}$ and (b) $A\beta_{1-42}$ fibrils.



Polyvalency is a powerful means for designing ligands that bind more strongly to targets.⁶ We have previously shown that macrocycle 1 can readily be linked to form divalent macrocyclic β -sheet structures that display two β -sheet domains.^{4a} Here, we ask whether this divalency can lead to better inhibitors against $A\beta$ aggregation. To address this question, we designed divalent linked macrocyclic β -sheets by connecting two macrocycles 1 through polyethylene glycol dicarboxylic acid (PEG diacid) linkers 3 (see Chart 2).⁷ We also ask whether targeting two different hydrophobic regions of $A\beta$ with these divalent linked macrocyclic β -sheets would lead to better activity than targeting a single hydrophobic region. To address this question, we designed homodivalent linked macrocyclic β -sheets 4 and 5 and heterodivalent linked macrocyclic β -sheets 6 (Chart 2). Homodivalent linked macrocyclic β -sheets **4** contain two copies of macrocycle **1a** containing $A\beta_{17-21}$ ($R_1-R_5 = LVFFA$) linked through PEG diacid linkers, while homodivalent linked macrocyclic β -sheets **5** contain two copies of macrocycle **1b** containing $A\beta_{30-34}$ ($R_1-R_5 = AIIGL$) linked through PEG diacid linkers. Heterodivalent linked macrocyclic β -sheets **6** contain one copy of macrocycle **1a** and one copy of macrocycle **1b** linked through PEG diacid linkers.

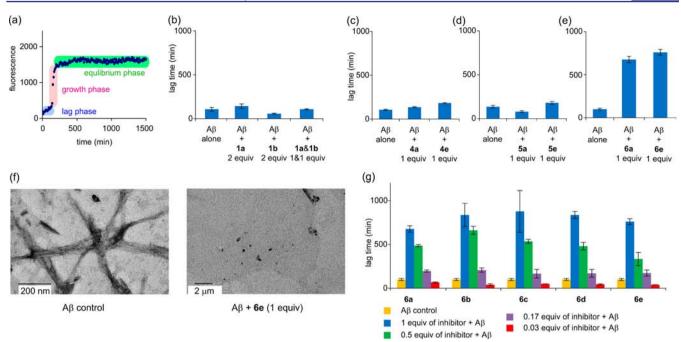
Our studies show that divalent linked macrocyclic β -sheets generally exhibit enhanced activity against A β aggregation and that heterodivalent linked macrocyclic β -sheets **6** are unexpectedly more active than homodivalent linked macrocyclic β -sheets **4** and **5**.

Article

Scheme 1

RESULTS

Syntheses of Divalent Linked Macrocyclic β -Sheets 4– 6. Divalent β -sheets 4–6 were synthesized by coupling PEG diacid linkers 3 with macrocycles 7 and 8, which each contain a single free amino group in one of the δ -linked ornithine turn units (Scheme 1). Homodivalent β -sheets 4 and 5 were synthesized by coupling macrocycles 7 or 8 with 0.45 mol equiv of the appropriate PEG diacid linkers 3 (Scheme S1). Heterodivalent β -sheets 6a–e were synthesized by first coupling macrocycle 8 with a 10-fold excess of PEG diacid linkers 3a–e to give monoacids 9a–e and then coupling the monoacids with macrocycle 7 (Scheme 1).


Inhibition of $A\beta$ Aggregation by Divalent Linked Macrocyclic β -Sheets. We used thioflavin T (ThT) fluorescence assays to investigate the effects of divalent β sheets 4–6 and monovalent homologues 1a and 1b on $A\beta_{1-40}$ aggregation.⁸ The time course of $A\beta$ aggregation generally demonstrates a sigmoidal curve, containing a lag phase, a growth phase, and an equilibrium phase (Figure 2a). The duration of the lag phase is widely used as a diagnostic indicator of inhibition of $A\beta$ aggregation. We thus used this lag time to evaluate the activity of 1a, 1b, and 4–6 against $A\beta_{1-40}$ aggregation.

ThT fluorescence assays show that macrocycle 1a containing sequence $A\beta_{17-21}$ slightly delays $A\beta_{1-40}$ aggregation, macrocycle 1b containing sequence $A\beta_{30-34}$ accelerates $A\beta_{1-40}$ aggregation, and a mixture of 1 mol equiv of macrocycle 1a and 1 mol equiv of macrocycle 1b does not significantly change the lag time (Figure 2b). Macrocycle 1a delays $A\beta_{1-40}$ aggregation by 30%

at 2 equiv, increasing the lag time from 107 to 143 min, while macrocycle **1b** accelerates $A\beta_{1-40}$ aggregation by 50%, reducing the lag time from 107 to 57 min. A mixture of 1 equiv of macrocycle **1a** and 1 equiv of macrocycle **1b** exhibits a lag time of 106 min, which is within statistical variation of that of $A\beta_{1-40}$ alone. These results are consistent with trends that we have observed in the effects of macrocycles **2** against $A\beta$ aggregation and also support that the central hydrophobic sequence $A\beta_{17-21}$ plays an important role in $A\beta$ aggregation and in the activity of macrocycles **1** and **2** against $A\beta_{1-40}$ aggregation.

ThT fluorescence assays show that heterodivalent β -sheets are not only far more active than their monovalent components but also are dramatically more active against $A\beta_{1-40}$ aggregation than their homodivalent counterparts. Heterodivalent β -sheets **6a** and **6e** dramatically delay $A\beta_{1-40}$ aggregation by 570% and 660% respectively at 1 equiv (15 μ M), while homodivalent β sheets **4a**, **4e**, and **5e** slightly delay aggregation by 30–70%, and homodivalent β -sheet **5a** accelerates aggregation by 40% (Figure 2c–e). Transmission electron microscopy (TEM) studies of samples taken from the ThT assays indicate that $A\beta_{1-40}$ forms fibrils in the absence of heterodivalent β -sheet **6e** and does not form fibrils in the presence of heterodivalent β sheet **6e** during the delayed lag time (Figure 2f).

It is interesting that there is no significant difference in lag time between heterodivalent β -sheet **6a**, which has a short linker (n = 0), and heterodivalent β -sheet **6e**, which has a longer linker (n = 4). To investigate the effect of the linker length, we synthesized additional heterodivalent β -sheets **6b**-**d**, which have linkers of intermediate length (n = 1-3). ThT

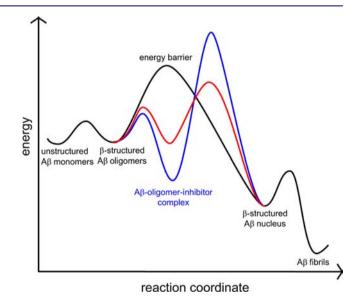
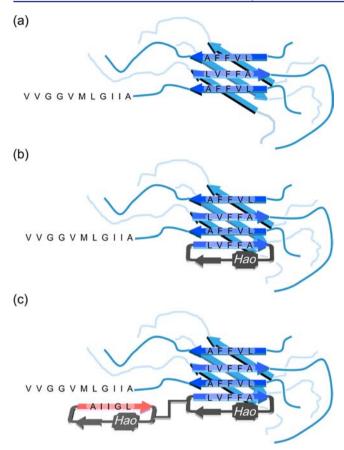


Figure 2. ThT fluorescence assays. (a) Fibrillation kinetics of $A\beta_{1-40}$ monitored by a ThT fluorescence assay. This plot displays three phases of $A\beta_{1-40}$ aggregation: the lag phase, the growth phase, and the equilibrium phase. (b) Lag time of $A\beta_{1-40}$ aggregation with and without macrocycles **1a** and **1b**. (c) Lag time of $A\beta_{1-40}$ aggregation with and without homodivalent β -sheets **4a** and **4e**. (d) Lag time of $A\beta_{1-40}$ aggregation with and without homodivalent β -sheets **5a** and **5e**. (e) Lag time of $A\beta_{1-40}$ aggregation with and without heterodivalent β -sheets **5a** and **5e**. (e) Lag time of $A\beta_{1-40}$ aggregation with and without heterodivalent β -sheets **6a** and **6e**. (f) TEM image of $A\beta_{1-40}$ (15 μ M) after incubation for 6.5 h without (left) and with (right) heterodivalent β -sheets **6e** (1 equiv). (g) Lag time of $A\beta_{1-40}$ aggregation with heterodivalent β -sheets **6a** at 0.03, 0.17, 0.5, and 1 mol equiv. All ThT assays were carried out on 15 μ M $A\beta_{1-40}$ in HEPES buffer at 31 °C.

fluorescence assays show that heterodivalent β -sheets **6a–e** delay $A\beta_{1-40}$ aggregation by 570–770% at 1 equiv (Figure 2g). These results indicate that the size of the PEG-based diacid linkers does not substantially affect the activity of hetero-divalent β -sheets **6**. ThT fluorescence assays also show that heterodivalent β -sheets **6** inhibit $A\beta_{1-40}$ aggregation at substochiometric concentrations in a dose-dependent manner. Heterodivalent β -sheets **6a–e** delay $A\beta_{1-40}$ aggregation at 0.17–1.0 equiv (2.5–15 μ M) by 70–770% (Figure 2g). Surprisingly, heterodivalent β -sheets **6a–e** all nucleate $A\beta_{1-40}$ aggregation at 0.03 equiv (0.5 μ M), accelerating $A\beta_{1-40}$ aggregation by 30–60%. These results indicate that both the activity and the role of the heterodivalent β -sheets in $A\beta_{1-40}$ aggregation depend on their concentrations.¹⁰

DISCUSSION

It is surprising that the heterodivalent linked β -sheets show enhanced inhibitory activity, given that only one of their components inhibits $A\beta_{1-40}$ aggregation and the other accelerates aggregation. A model based on both nucleationdependent polymerization and that which we have previously proposed may explain this enhanced inhibition.4d,11 In this model, $A\beta_{1-40}$ aggregates to form early β -structured oligomers, which proceed to form a β -structured nucleus, and finally polymerize to form cross- β fibrils. Inhibitors bind to and stabilize the early β -structured oligomers and thus delay aggregation, while accelerators create a new, lower energy pathway for aggregation. Figure 3 provides a reaction freeenergy diagram for the native, inhibited, and accelerated $A\beta_{1-40}$ aggregation with black, blue, and red curves. Better inhibitors bind to the early β -structured oligomers more strongly and thus better delay the formation of the β -structured nucleus.¹²



Article

Figure 3. Effect of inhibitors and accelerators on the energetics of $A\beta$ aggregation. The black curve corresponds to a pathway in which $A\beta_{1-40}$ aggregates without inhibitors, while the blue and red curves correspond to pathways in which $A\beta_{1-40}$ aggregates with inhibitors and accelerators, respectively.

The hydrophobic N-terminal $A\beta_{17-21}$ (LVFFA) region forms the core of the β -structured oligomers, in which hydrogen bonding and hydrophobic interactions create a multilayered β sheet structure (Figure 4a). Similar multilayered β -sheet structures are also observed in macrocycle **1a** and the amyloid-like fibrils formed by peptide fragment $A\beta_{16-21}$ (KLVFFA).^{4b,13} Macrocycle **1a** containing the N-terminal LVFFA pentapeptide complements and binds to the oligomers

Journal of the American Chemical Society

Figure 4. Model for enhanced activity of heterodivalent β -sheets 6 against $A\beta_{1-40}$ aggregation. (a) $A\beta$ oligomer. (b) $A\beta$ oligomer-1a complex. (c) $A\beta$ oligomer-6 complex.

through similar types of interactions and thus inhibits aggregation (Figure 4b). Macrocycle **1b** containing the C-terminal AIIGL pentapeptide better complements the C-terminal region of $A\beta_{1-40}$ and facilitates the transition of $A\beta_{1-40}$ to the U-shaped superstructure associated with fibrils. In the U-shaped superstructure, the C-terminal region also forms β -sheet structure and is packed against the N-terminal region. By facilitating the formation of the U-shaped superstructure, macrocycle **1b** accelerates aggregation.

The modest effect of homodivalent linkage in **4** and **5** suggests that the β -structured oligomers do not present multiple exposed β -sheet edges in sufficient proximity to be bridged by short PEG linkers. Heterodivalent linked macrocyclic β -sheets **6** bind to the β -structured oligomers more strongly, because the LFVVA-containing macrocycle can bind to the core of the β -structured oligomers, while the AIIGL-containing macrocycle can achieve additional interactions with the C-terminal region of A β_{1-40} (Figure 4c). This working model may provide a framework for the design of even more effective inhibitors that target both the N- and C-terminal regions of A β .

CONCLUSION

The heterodivalent design of linked macrocyclic β -sheets **6** enhances their activity against $A\beta$ aggregation. The enhanced activity suggests that polyvalent inhibitors that can target multiple regions of $A\beta$ are better than ones that only target a single region. The strategy described herein may be applicable

to design inhibitors against aggregation of other amyloid proteins.

ASSOCIATED CONTENT

S Supporting Information

Details of synthesis of divalent linked macrocyclic β -sheets 4– 6; thioflavin T fluorescence assays of $A\beta_{1-40}$ with 1a, 1b, and 4–6; TEM; ESIMS and HPLC data of 4–6 and 9. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

jsnowick@uci.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Institutes of Health (1R01GM097562 and R01AG033069) for grant support, Dr. Mihaela Necula for helpful guidance and assistance in preliminary experiments, Mr. Ming-Je Sung for assistance in TEM experiments, and Dr. Robert Tycko for providing the coordinates for $A\beta_{1.40}$ used in Figure 1. We thank Dr. Cong Liu and Dr. David Eisenberg for helpful discussion and insights into the inhibition process.

REFERENCES

(1) (a) Roychaudhuri, R.; Yang, M.; Hoshi, M. M.; Teplow, D. B. J. Biol. Chem. 2009, 284, 4749–4753. (b) Jakob-Roetne, R.; Jacobsen, H. Angew. Chem., Int. Ed. 2009, 48, 3030–3059.

(2) (a) Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. *Proc. Natl. Acad. Sci. U.S.A.* 2005, 102, 17342–17347. (b) Petkova, A. T.; Yau, W.-M.; Tycko, R. *Biochemistry* 2006, 45, 498–512.

(3) (a) Luca, S.; Yau, W.-M.; Leapman, R.; Tycko, R. Biochemistry 2007, 46, 13505–13522. (b) Hebda, J. A.; Miranker, A. D. Annu. Rev. Biophys. 2009, 38, 125–152. (c) Wiltzius, J. J. W.; Sievers, S. A.; Sawaya, M. R.; Eisenberg, D. Protein Sci. 2009, 18, 1521–1530. (d) Middleton, C. T.; Marek, P.; Cao, P.; Chiu, C.-C.; Singh, S.; Woys, A. M.; de Pablo, J. J.; Raleigh, D. P.; Zanni, M. T. Nat. Chem. 2012, 4, 355–360.

(4) (a) Woods, R. J.; Brower, J. O.; Castellanos, E.; Hashemzadeh, M.; Khakshoor, O.; Russu, W. A.; Nowick, J. S. J. Am. Chem. Soc. 2007, 129, 2548–2558. (b) Liu, C.; Sawaya, M. R.; Cheng, P.-N.; Zheng, J.; Nowick, J. S.; Eisenberg, D. J. Am. Chem. Soc. 2011, 133, 6736–6744.
(c) Zheng, J.; Liu, C.; Sawaya, M. R.; Vadla, B.; Khan, S.; Woods, R. J.; Eisenberg, D.; Goux, W. J.; Nowick, J. S. J. Am. Chem. Soc. 2011, 133, 3144–3157. (d) Cheng, P.-N.; Liu, C.; Zhao, M.; Eisenberg, D.; Nowick, J. S. Nat. Chem. 2012, in press.

(5) (a) von Bergen, M.; Friedhoff, P.; Biernat, J.; Heberle, J.; Mandelkow, E. M.; Mandelkow, E. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, 97, 5129–5134. (b) Inouye, H.; Sharma, D.; Goux, W. J.; Kirschner, D. A. *Biophys. J.* **2006**, 90, 1774–1789.

(6) (a) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. **1998**, 37, 2754–2794. (b) Kim, Y.-S.; Lee, J.-H.; Ryu, J.; Kim, D.-J. Curr. Pharm. Des. **2009**, 15, 637–658.

(7) (a) Zutshi, R.; Shultz, M. D.; Ulysse, L.; Lutgring, R.; Bishop, P.; Schweitzer, B.; Vogel, K.; Franciskovich, J.; Wilson, M.; Chmielewski, J. Synlett **1998**, 1040–1044. (b) Wittmann, V.; Takayama, S.; Gong, K. W.; Weitz-Schmidt, G.; Wong, C.-H. J. Org. Chem. **1998**, 63, 5137– 5143.

(8) LeVine, H. Methods Enzymol. 1999, 309, 274-284.

(9) (a) Tjernberg, L. O.; Näslund, J.; Lindqvist, F.; Johansson, J.; Karlström, A. R.; Thyberg, J.; Terenius, L.; Nordstedt, C. J. Biol. Chem. **1996**, 271, 8545–8548. (b) Sciarretta, K. L.; Gordon, D. J.; Meredith, S. C. Methods Enzymol. **2006**, 413, 273–312. (c) Williams, A. D.;

Journal of the American Chemical Society

Shivaprasad, S.; Wetzel, R. J. Mol. Biol. 2006, 357, 1283–1294.
(d) Estrada, L. D.; Soto, C. Curr. Top. Med. Chem. 2007, 7, 115–126.
(e) Miller, Y.; Ma, B.; Nussinov, R. Chem. Rev. 2010, 110, 4820–4838.

(10) The acceleration of $A\beta_{1-40}$ aggregation at low concentrations of heterodivalent β -sheets **6a–e** suggests that **6a–e** may accelerate aggregation in monomeric form and inhibit aggregation in oligomeric form.

(11) Finder, V. H.; Glockshuber, R. Neurodegener. Dis. 2007, 4, 13–27.

(12) An alternative model for the inhibition involves binding of the heterodivalent inhibitors to the N- and C-terminal β -sheet regions of small $A\beta$ fibrils and thus the prevention of their elongation by a *capping* mechanism. The observation that even inhibitors with very short linkers (e.g., **6a**, n = 0) block aggregation does not appear to be consistent with this alternative model, because the separation of the N- and C-terminal β -sheet regions of the $A\beta$ fibrils is larger than the linker (ref 2b).

(13) Colletier, J.-P.; Laganowsky, A.; Landau, M.; Zhao, M.; Soriaga, A. B.; Goldschmidt, L.; Flot, D.; Cascio, D.; Sawaya, M. R.; Eisenberg, D. Proc. Natl. Acad. Sci. U.S.A. **2011**, 108, 16938–16943.